2019MBA联考数学如何稳扎稳打稳得分?

2018-11-23 15:42:17 编辑:郑州华杰MBA 关注:

  在研究生考试的冲刺阶段,为了使同学们达到最佳的考试效果,必须掌握恰当的复习方法,确立正确的复习策略,做到计划周详,复习得法,化难为易,合理安排考前冲刺时间。下面一起来看看数学的冲刺复习。

  一、分配复习时间以成绩提高最快为原则

  考研数学有三部分,即高等数学(微积分)、线性代数和概率统计,其中数学二不考概率统计。在最后两周的时间内,应该多花一些时间去复习能尽快提高成绩的学科及自己尚未完全掌握的重要知识点,这样才能在最短的时间内产生最大的效益。

  从试卷的难度来看,试题可以分为6类:

  1.太难,一般这样的问题是不会出现的。但是根据28年我们来所做的统计分析,它即使出现,也是较低的分值,一般不会超过四分;

  2.适中,但题的区分度比较低,这样的问题在试卷当中要适当出现。但是分值不会超过10%;

  3.比较容易但区分度比较低,这样的问题呢,也是占有较低的分值;

  4.较难,倒有较高的区分度。这样的问题一般要占有10%。这类的问题主要体现在了试题的综合性和应用性比较强。它具有这方面的特点;

  5.难度适中,区分度比较好,这样的试卷是占有75%的分值;

  6.比较容易的,对低分的考生呢有一定的区分度,这样的试题一般占有5%。

  也就是说,从试题的分类来看,那么中等偏上的问题应该是高达80%-85%。我们重点掌握这部分内容,我们数学试卷就能得到很高的成绩。

  掌握了以上出题套路,我们就可以进行有规划的复习。

  自己擅长的科目和题型不应再花太多时间。而自己不擅长的一些科目和题型,应多花时间去突击复习,成绩应该会较快提高。比如数学一中的线面积分、无穷级数,还有特征值、特征向量和实对称矩阵的对角化等等。概率统计中的二维随机变量和数理统计中的内容,多复习、多记忆也会收到很好效果的。

timg (2).jpg

  二、掌握考试的应试技巧——黄金战术原则:六先六后,因人制宜

  1、战术之一——先易后难。就是先做小题和简单题,后做综合题和大题。根据自己的实际,果断跳过啃不动的题目,从易到难解题。但要注意认真对待每一道题,力求有效,不能走马观花,有难就退。

  2、战术之二——先熟后生。通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处。对后者,不要惊慌失措,应想到试题偏难对所有考生都难,确保情绪稳定。

  对全卷整体把握之后,就可实施先熟后生的战略战术。即先做那些内容掌握到家、题型结构比较熟悉、解题思路比较清晰的题目,让自己产生“旗开得胜”的效果,从而有一个良好的开端,以振奋精神、鼓舞信心,很快进入最佳思维状态,即发挥心理学中所谓的“门槛效应”。之后做一题得一题,不断产生激励,稳拿中低,见机攀高,达到超常发挥、拿下中高档题目的目的。

  3、战术之三——先同后异。就是说,先做同科同类型的题目,思维比较集中,知识和方法的沟通比较容易。考研题一般要求较快地进行“兴奋灶”的转移,而“先同后异”,可以避免“兴奋灶”转移过急、过频的跳跃,从而减轻大脑负担,保持有效精力。

  4、战术之四——先小后大。小题一般信息量少、运算量小,易于把握,不要轻易放过,应争取在做大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的心理空间。

  5、战术之五——先点后面。近年的考研数学解答题呈现为多问渐难式的“梯度题”,解答时不必一气做到底,应走一步解决一步,而前面的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面。

  6、战术之六——先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;如估计两题都不容易,则先做高分题“分段得分”,以增加在时间不足的前提下的得分能力。

  与此同时,要求大家审题要慢,解答要快;关键步骤力求全面准确,宁慢勿快。尽量做到内紧外松,既要保持注意力高度集中,又要思想上放得开,沉着应战,确保成功!

  三、临阵磨枪与重心后移

  中国有句俗话:“临阵磨枪,不快也光”。这就说明考前强化训练的重要性。等到考前两周做两到三套模拟题,对提高解题速度、激活所学知识非常关键,同时也可以在做题过程中查缺补漏,并探索适合于自己的考试答题的时间分配规律。

  做模拟题不要斤斤计较分数的高低,主要是要熟悉考研试题的特点。模拟题也可起到增加考试经验和查缺补漏的作用。但是,仅靠做模拟题来查缺补漏是远远不够的。数学复习的最后阶段一定要重心后移,这是因为数学的考点、重点、难点大部分均在每本书的中间或最后几章,命制的综合题和大题也多数是在后面几章出现。

  数学一关于高等数学部分的考试重点在定积分、重积分、线面积分、无穷级数等章,而数学二、三的高等数学(微积分)部分的考试重点在微分中值定理、定积分等后面几章。

  复习线性代数最重要是向量的线性相关性、线性方程组、特征值与特征向量、二次型与正定矩阵等内容。这几章题型变化多,知识点的衔接与转换非常集中,便于命制综合题。

  复习概率统计的重点是多维随机变量及其分布以及随机变量的数字特征。

  四、进行有针对性的高效复习———综合题的解题策略

  所谓综合题就是考查多个知识点,即把前后章节的知识综合起来进行考核的试题。这类题目要求考生要学会分析问题,抓联系、抓总结,切实掌握与知识点之间的联系,真正理解基本概念的实质,融会贯通各概念之间的内在联系,形成知识网来分析问题和解决问题。

  数学考研试题大部分是复合型的。在复习高等数学时,一定要把极限论、微分学和积分学有机地结合起来,前后贯穿,灵活运用。在复习线性代数时,一定要以线性方程组为核心,前后融会贯通,灵活运用所学知识来分析问题和解决问题,不要将它们孤立割裂开来。比如行列式、矩阵、向量、线性方程组是线性代数的基本内容,它们不是孤立割裂的,而是相互渗透,紧密联系的。在复习概率统计时,考生要灵活运用所学知识,建立正确的概率摸型,综合运用极限、连续、导数、积分、广义积分、二重积分以及级数等知识去分析和解决实际问题,提高解综合题的能力。

  对于会做的题目当然要力求做对、做全、拿满分,而更多的问题是对不能全面完成的题目如何分段得分。

  1、策略之一——缺步解答:对一个疑难问题,确实啃不动时,一个明智的解题策略是,将它划分为一个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。如从最初的语言文字转化成数学语言和相应数学公式,把条件和目标译成数学表达式等,都能得分。而且可望从上述处理中,从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。

  2、策略之二——跳步解答:解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底。

  如果题目有两问,第一问做不上,可以把第一问当做已知条件,先完成第二问,这叫跳步解答。如果在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。